Code: 20CS4501A

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

DATA SCIENCE (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	"The initial investigation of data is done by							
		Data Exploratory". Explain the above	L2	CO1	10 M				
		statement with the help of summary	LZ						
		statistics and graphical representation.							
	b)	Write a short note on Data Acquisition.	L2	CO1	4 M				
OR									
2	a)	Describe in detail about hyper parameter	L2 CO1		10 M				
		optimization techniques in Data Science.							
	b)	Discuss briefly on Concept of Deployment	t L2	CO1	4 M				
		in Data Science.							
UNIT-II									
3	a)	Illustrate Data cleaning techniques and	L3	CO2	7 M				
		benefits of cleaning the Data.			/ 1V1				

	b)	Compare the various stages of Data			
		Transformation in preprocessing model of	L3	CO2	7 M
		Data Science.			
		OR			
4	a)	What does a PCA do? How is the first principal component axis selected?	L3	CO2	7 M
	b)	Discuss in detail about Data reduction with an example.	L3	CO2	7 M
		UNIT-III			
5	a)	What is the difference between probability density function (PDF) and probability	L2	CO3	10 M
		mass function (PMF)? Write down the proportion they must satisfy.	LZ		10 11
	b)	Write a Short note on Simple Random sampling.	L2	CO3	4 M
		OR			
6	a)	Explain in detail about Chi-squared distribution with example.	L2	CO3	10 M
	b)	What is Systematic sampling?	L2	CO3	4 M
		UNIT-IV			
7	a)	Explain Logistic Regression with an example.	L3	CO4	7 M
	b)	Which specific regressors seem essential in multiple regressions? How will you address this question? Discuss.	L3	CO4	7 M
	1	OR		1	

8	a)	Sam found how many hours of sunshine vs				
		how many ice creams				
		from Monday to Friday				
		"x" Hours of "y" Ice Creams				
		Sunshine	Sold			
		2	4			
		3	5	L3	CO4	10 M
		5	7			
		7	10			
		9	15			
		Let us find the best	` <u> </u>			
		intercept) that suits th				
	1 \	Regression.				
	b)	1			CO4	4 M
		in Linear Regression				
		,	UNIT-V		,	
9	a)	How does model comp				
		variance? What is th	e difference between	L3	CO4	6 M
		Bias and Variance?				
	b)	Explain in detail al				
		decomposition for model assessment with			CO4	8 M
		example algorithm.				
		•	OR			
10	a)	Briefly explain how y	ou would calculate a			
		cross-validated estimate	te of prediction error			
		in a Linear regression. Is this estimate likely			CO4	7 M
		more minor or more si				
		sample error?				
	b)	What is the holdout an				
		limitation of this ap	L3	CO4	7 M	
		alternative approaches	•			
		and that to approaches	101 101			